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Abstract. We propose a new algorithm which builds a feedforward layered network in 
order to learn any Boolean function of N Boolean units. The number of layers and the 
number of hidden units in each layer are not prescribed in advance: they are outputs of 
the algorithm. I t  is an algorithm for growth of the network, which adds layers, and units 
inside a layer, at will until convergence. The convergence is guaranteed and numerical 
tests of this strategy look promising. 

1. Introduction 

Among the various possible architectures of neural networks, the feedforward layered 
systems (Rumelhart and McClelland 1986) are relatively simple. There is no feedback 
and  the information is processed from one layer of neurons to the next in parallel. 
The first layer is the input and the last one the output; the intermediate layers contain 
the so-called ‘hidden units’. In the following we shall use binary neurons (formal 
neurons) which react through a threshold function to a weighted sum of signals of the 
neurons in the previous layer. It is known that such a class of networks has a great 
computational ability. In principle it can implement any function of the No Boolean 
units in the input layer, provided there is at least one (large enough) intermediate layer. 

In using these networks one is immediately confronted with the problem of learning. 
How does one determine the couplings between neurons in successive layers, in order 
to build a network which achieves a given task? The general framework is that the 
network learns through the presentation of examples. A training set of p o  patterns is 
presented in the input layer. To each such input .$”, p = 1,. . . , p o ,  (each 6’’ is one of 
the 2 N 0  configurations of the input layer) one wants to associate an  output U” which 
is known by the operator. For simplicity in the following we shall suppose that the 
output is binary: there is only one output neuron (the generalisation of our approach 
to N ’  output neutrons will be commented upon in the conclusion). Our first problem 
is to build a network which produces the correct output U” for each input 5’’ in the 
training set. This is basically the learning problem which we address in this paper. A 
second problem which is of interest is that of generalisation: if the mapping 6’’ + U” 

is a relatively ‘smooth’ function (this notion will be made more precise in 5 3) ,  and if 
the training set is large enough, one may hope that the network will infer the rule from 
the examples which it has seen, so that it will associate correct outputs to new inputs 
which were not present in the training set. This problem will be looked at in our  
numerical simulations. 
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2192 M Mkzard and J-P Nuda1 

The problem of learning is relatively simple when there are only two layers, i.e. no 
hidden units (the perceptron architecture) (Rosenblatt 1962, Minsky and Papert 1969). 
Unfortunately this architecture can only implement linearly separable functions, so 
that for more involved tasks one must add hidden units. Then the learning is much 
harder because the states taken by the hidden units are not fixed a priori (Rumelhart 
and McClelland 1986). 

The most widely used strategy is known as back propagation (Le Cun 1985, 
Rumerlhart et a1 1986, see also Werbos 1974). For a given network one computes the 
effective outputs u ’ ~  and tries to minimise an error (like, e.g., E p ( ~ ’ p - d ‘ ) 2 )  by a 
gradient descent procedure. Apart from the computer time, the drawbacks are that 
the structure of the network (number of layers, number of hidden units in each 
intermediate layer) has to be guessed, one must use analogue neurons even in cases 
where only digital ones would be necessary, and the minimisation is not guaranteed 
to converge to an absolute minimum with zero error. 

Another strategy introduced recently (Grossman et a1 1988) uses digital neurons, 
but always within a structure which is fixed a priori with one intermediate layer, and 
a procedure of trial and error for fixing the values of the hidden units. 

In our strategy units are added like tiles whenever they are needed. The first unit 
of each layer plays a special role: we call it the master unit. During the growth of the 
network, the master unit of the more recently built layer gives a strictly better approxima- 
tion of the desired output than the previous one, so that eventually it gives the exact 
output. Convergence is guaranteed for any problem: the algorithm always produces 
a finite number of layers. In each layer, once the master unit has been obtained, one 
checks if it gives the exact output. If not, new ‘ancillary’ units are added to the layer 
until this layer gives a ‘faithful representation’ of the problem: any two patterns with 
distinct outputs have distinct internal representations. Once this condition is fulfilled, 
the current layer is considered to have been achieved, and one proceeds to build the 
master unit of the next layer. Each new unit is generated through a perceptron-type 
algorithm. The main advantage of this strategy is that the structure of the network is 
not fixed in advance, but generated dynamically during learning. The network grows 
until it reaches a size which enables it to implement the desired mapping. As we shall 
see this is also useful for generalisation. 

A recent independent work (Rujan and Marchand 1988) has adopted the same 
kind of philosophy of adding neurons at will, but in practice the two algorithms are 
completely different. In Rujan and Marchand (1988) only one intermediate layer of 
hidden units is generated, and the couplings between the input and hidden layers are 
found through a kind of exhaustive search procedure inside a restricted set of possible 
couplings. Our algorithm can generate several layers; the use of the perceptron 
algorithm instead of an exhaustive search enables us to treat large systems (i.e. problems 
with a large number of input units). 

The paper is organised as follows. In 0 2 we describe our tiling algorithm in detail. 
In 0 3 we present results of some numerical simulations on exhaustive learning and 
generalisation. Perspectives are drawn in 0 4. 

2. The tiling algorithm 

2.1. Basic notions and notation 

We consider layered nets, made of binary units which can be in a plus or minus state 
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(formal neurons). A unit i in the Lth layer is connected to the NL-,  units of the 
preceding layer, and its state S!” is obtained by the threshold rule 

where ( w t ) ,  j = 1 , .  . . , N L - ,  , are the couplings. The threshold is taken into account 
by a zeroth unit in each layer, clamped in the + 1  state (SiL’= l ) ,  so that wko is the 
bias. For a given set of p o  (distinct) patterns of No binary units, (6”  = 
(6; = * l , j  = 1, . . . , AIo), p = 1, . . . , p o } ,  we want to learn a given mapping 5” + U”. 

The mapping can be any Boolean function of the No Boolean input units or, if 
po < 2N0, the restriction to the p o  patterns of any Boolean function. We will refer to 
the set of po patterns on which learning is performed as to the training set, or the set 
of input patterns. 

When the function (more precisely the restriction of the mapping to the training 
set) is linearly separable, a perceptron architecture is sufficient and the perceptron 
algorithm (Rosenblatt 1962, Minsky and Papert 1969) allows us to find a set of weights 
w = ( w j ) , j = l  , . . . ,  N o , s u c h t h a t , f o r p = l ,  . . . ,  Po, 

(with the above convention 60” = 1 ) .  There are several variants of this algorithm and 
in particular the ‘Minover’ algorithm (Krauth and MCzard 1987) allows one to find 
the solution w giving the largest possible stabilities. 

In the non-linearly separable case, the perceptron algorithm does not converge: 
for any set of weights some patterns will have the wrong output. However, there is a 
simple variant of it, the ‘pocket algorithm’ (Gallant 1987), which allows one to find a 
good solution. It consists in running the usual perceptron learning algorithm, with a 
random presentation of the patterns, but keeping in memory (in one’s pocket) the set 
of couplings which has produced the smallest number of errors so far. It has been 
shown that with probability as close to one as desired, it will give the set of weights 
w with the least number of errors. We will make extensive use of these algorithms. 

Note that each hidden unit is a particular realisation of the perceptron: it realises 
one of the possible mappings of the patterns of the previous layer. We now explain 
how we build a net to learn a mapping 6” +U” for a given set of p o  patterns of No 
input units (pas 2Y)). 

2.2. Theorem for convergence 

We want to build a network layer by layer. Suppose that we have built the Lth layer, 
and that it is made of NL units (plus the threshold unit). To each input pattern 6” 
there corresponds a set of values of the neurons in the Lth layer. We shall refer to 
this set of values as the internal representation of pattern 6” in the layer L. (The L = 0 
layer is the input layer; the 0th representations are simply the input patterns themselves.) 
We say that two patterns belong to the same class (for the layer L) if they have the 
same internal representation, which we call the prototype of the class. If there are pL 
distinct classes, we have thus p L  patterns (of NL+l  units), each of which is the 
representation of at least one input pattern. The problem is now to map these pL 
prototypes onto the desired output. 
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In each layer L we will distinguish two types of units. The first unit will play a 
special role: we call it the master unit. In order to understand the role of the master 
unit, one has to compare for each input pattern the state of this unit in layer L with 
the desired output state. There is a certain number of patterns eL for which the state 
of the master unit is not the desired output, and  the remaining Po-eL patterns for which 
the master unit gives the desired output. This means that if the network is stopped at  
layer L, taking as output unit the master unit of this layer, then the network would 
produce eL errors. From layer L -  1 the algorithm will generate the master unit of 
layer L trying to minimise the number of errors eL, and in particular it will always 
find a solution such that 

e L s  eL-l - 1. (3) 

Clearly, such an algorithm will converge after a finite number of layers. In the last 
layer L*, eL* = 0, the master unit is identical to the desired output unit. 

All the other units in layer L, and ancillary units, will be used only in order to 
fulfil the faithfulness condition. Clearly a necessary condition in order to learn the 
mapping is that two input patterns having different output should have different internal 
representations. We will say that a class is ‘faithful’ if all the patterns belonging to 
this class have the same output-and then this common output is the desired output 
for the prototype of this class. Otherwise the class is said to be ‘unfaithful’. 

The theorem which ensures convergence is the following. 

Theorem. Suppose that all the classes in layer L -  1 are faithful, and  that the number 
of errors of the master unit, eL- l ,  is non-zero. Then there exists at least one set of 
weights w connecting the L - 1 layer to the master unit such that eL S eL-, - 1 .  Further- 
more, one can construct explicitly one such set of weights U. 

Let us now give the proof which is very simple. 

Proof: Let 7” = (7 r , j  = 0, . . . , NL-1), v = 1, . . . , pr- l ,  be the prototypes in layer L - 1. 
Each prototype T~ is the internal representation of a certain number V, of input 
patterns (2”  V,  =po),  and all of them have the same output, which we shall denote s’. 
The master unit of the Lth layer is connected to the NL-l + 1 unit of the L -  1 layer 
by a set of weights w = ( wJ, j = 0,. . . , NL-I). Obviously the couplings w, defined by 
w, = 1 and wJ = 0 for j f 1, would give exactly the same master unit in layer L as in 
layer L - 1, so that eL = Consider now the following perturbation of this solution. 
Let po be one of the patterns for which T ~ O =  -s!-’“, and define the set of weights U by 
u 1  = 1 and  uJ = A S ! - ’ ~ I T ; ~ ~  for j # 1, where A is some positive constant to be fixed later 
on. For a prototype p, the master unit obtained with U will take the value 

Clearly the prototype p0 is stabilised (i.e. mpo= s!-’o) if A > 1/ NL-I. Consider now any 
stable prototype p of the L - 1 layer ( T Y  = s@). The quantity ~ ” s ” ~  Z j #  I T,”T,’O can take 
the values -NL- ,  , - N L - l  + 2 , .  . . , N L - I .  However, the fact that the representations in 
the L - 1 layer are faithful means exactly that the worst case, -NL-I,  can never be 
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obtained. Otherwise, one would have S@T? = -S@OT;O for all j ,  including j = 1 ,  and this 
means (taking j = 0) s@ = -s@”, T; = r ;~:  p and po would be two identical prototypes 
with different outputs. Thus one can choose A = l / ( N L - I  - l ) ,  so that in addition to 
all the prototypes p stabilised in layer L -  1 ,  po is also stabilised. Hence U is one 
particular solution which, if used to define the master unit of layer L, will give 
e L s e L - , -  V W O S e L - , - 1 .  

This theorem opens a gate for the definition of various algorithms. We study now 
in detail one specific algorithm, the tiling algorithm. Clearly one would like to generate 
a network with the minimal architecture. Having this in mind as a general guide line, 
we propose an algorithm based upon: (i) a strategy for generating the master unit, in 
such a way that at each layer eL is at worst equal to the value given by U (this is 
explained in § 2.3 below); (ii) a strategy for adding other units in the current layer, in 
such a way that one always ends up with faithful representations (this is presented in 
0 2.4 below). Thus convergence is guaranteed. Alternative algorithms inspired by the 
same ideas and the convergence theorem will be briefly discussed in the conclusion. 

2.3. Generating the master unit 

Suppose we have achieved the ( L -  1)th layer. We keep to previous notation: r” = 
( ~ i y ,  i = 0, . . . , NL-I), v = 1, . . . , p L - l ,  are the prototypes, each of them being the internal 
representation of a certain number Vu of input patterns, the output of which is s”. We 
try to learn the mapping 7 ”  + s”, v = 1, .  . . , p L - I ,  with the following variant of the 
pocket algorithm. We run a perceptron algorithm with a random presentation of the 
patterns. At each update we keep ‘in our pocket’ the set of couplings which has 
produced the smallest possible number of errors with respect to the input patterns. 
This means that for each set of couplings w visited by the perceptron, we compute the 
number e (  w )  of prototypes for which this set would not give the desired output, each 
prototype v being weighted by its volume V , :  

(where S is the Kronecker symbol). Eventually we get the set of couplings which 
minimises e (  w )  among the w which have been visited by the perceptron. This ‘optimal’ 
set w* gives a certain number of errors eL = e (  w * ) .  If in fact the perceptron algorithm 
converges, i.e. eL = 0, the net is achieved: the ( L  - 1)th representations are linearly 
separable, the master unit in the Lth layer takes the correct state U @  when pattern CL 
is taken as input. 

If  the particular set U of the previous section is taken as initial set in the pocket 
algorithm described above, the output set w will always satisfy (3) .  It is important to 
note that (3) is satisfied independently of the use of the pocket algorithm. The point 
of the pocket algorithm is just to speed up this convergence (i.e. generate less layers). 

2.4. Building the ancillary units: divide and conquer 

We now suppose that the master unit is still not identical to the desired output unit, 
and we explain how we add units in order to obtain faithful classes. Recall that we 
want to learn a mapping for p = p L - I  distinct prototypes r@ = ( T ? ,  i = 0,. . . , N )  of 
N =  NL-I units plus the threshold unit. In this section we will call these prototypes 
‘patterns’. Each T @  is the prototype of one faithful class of the ( L  - 1)th layer, and its 
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output s p  is the common output of all the patterns of this class. We already know the 
zeroth unit of the Lth layer, i.e. the (future Lth) threshold unit, which is in the state 
1 for every pattern, and the first unit, the master unit. At this point, the patterns belong 
to one of two classes whose prototypes are ( T A =  1, T :  = 1) and ( T A =  1, 7: = -1). The 
fact that the master unit is not equal to the output unit means that at least one of the 
two classes is unfaithful. 

Suppose now that we have built 1 + N ‘  units, each one being defined by its set of 
weights wi = ( wii ) ,  j = 1, . . . , N (  i = 0,. , . , N ’ ) ,  and each pattern p = 1 , .  . . , p has its 
current representation in the Lth layer and its desired output sp.  In general the number 
p ’  of distinct representations is smaller than p .  By going through all the p patterns 
one can easily make an ordered list of these p ’  distinct current representations, 

- ( T : ” ,  i = 0, . . . , N ‘ ) ,  v = 1,  . . . , p ’ ,  the new class prototypes, and associate with 
each of the p patterns a class number, i.e. the number of the prototype which is the 
representation of that pattern. Note that in order to see whether the representation of 
a pattern is identical to one of the prototypes it is sufficient to compute their overlap 
(scalar product), and to compare it with N ’ .  As explained above, if all the classes are 
faithful, the layer is considered as achieved. If not, the next unit is obtained by picking 
one of the unfaithful classes, and one tries to learn (by a perceptron algorithm) the 
mapping P + s p  for the patterns p belonging to this class only. In the best case, all 
this subset is learned: the class is then broken into two faithful classes. If not, it is 
always possible to learn (again by a perceptron algorithm) at least a well chosen part 
of this class in such a way that it will indeed be broken into two classes-although 
now at least one of them will still be unfaithful. In particular it is always possible to 
learn the mapping for any two patterns of the class having opposite outputs. (Here 
we suppose that there are no contradictory data-identical patterns leading to distinct 
outputs.) In practice, in order to pick one of the unfaithful classes, we ordered the 
classes by increasing sizes, and chose to learn the smallest one. Moreover, whenever 
the class was perfectly learned, we then tried to learn in addition the next class (with 
the same unit), and so on. 

With this procedure, for each new unit at least one class is broken into two classes, 
so that with at most p units all the classes are faithful. We now give the results of the 
numerical simulations. 

- 

3. Simulations 

3.1. Exhaustive learning 

We have tested our algorithm on several classical tasks with training on the full set of 
the 2 N ~  patterns. We give here the results for two problems of very different natures: 
the learning of parity and the learning of random Boolean functions. 

3.1.1. Parity task. In the parity task for No Boolean units the output should be 1 if 
the number of units in state + 1  is even, and -1 otherwise. We have run the tiling 
strategy on this task for N o s  10. We end up with one layer of hidden units, with No 
hidden units (plus the threshold unit) up to N o = 9 ,  and 11 units for N o =  10. As an 
example we give in table 1 the solution found for N o = 6 .  The reader can check that 
this solution is strictly equivalent (through a ‘gauge transformation’) to the ‘human’ 
solution, where all the weights between the 6 input units and the 6 hidden units are 
equal ( + I ) ,  and the 6 thresholds w , . ~  are odd integers (-5, -3, -1, 1,3,5) so that each 
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Table 1. The network generated by the algorithm when learning the parity task with No = 6 .  
There is only one hidden layer of 6 units. 

Hidden layer 

Unit Threshold 
number, i (w: , ; )  Coupling from the input layer to the hidden unit i 

1 -55 + 1 1  + 1 1  + 1 1  -11 + I  1 -11 
2 +33 -11 - 1 1  -11 + 1 1  - 1 1  + 1 1  
3 -11 + 1 1  + 1 1  + l l  -11 + 1 1  -11 
4 -11 - 1 1  - 1 1  -11 + 1 1  - 1 1  + 1 1  
S +33 + 1 1  + 1 1  + 1 1  - 1 1  + 1 1  - 1 1  
6 -5s -1 1 -11 -11 + 1 1  - 1 1  + 1 1  

Output unit 

Threshold Couplings from the hidden layer to the output unit 

hidden unit is coding for the patterns having at least a given number of +1 inputs 
(respectively 6 , 5 , 4 , 3 , 2 ,  1). In table 1 we have re-ordered the hidden units with respect 
to their thresholds. Once the internal representations are known (i.e. after the algorithm 
has converged), one can recompute the couplings with the Minover algorithm, leading 
to the optimal couplings for these internal representations. The weights quoted in the 
table have been obtained in this way. (Strictly speaking, the most elegant solution has 
all couplings from the hidden layer to the output unit equal. The Minover algorithm 
gives this optimal solution with any prescribed accuracy. Here we have asked only 
for a 10% accuracy.) 

3.1.2. Random Boolean function. A random Boolean function is obtained by drawing 
at random the output ( i l  with equal probability) for each input configuration. We 
present this academic example to show the ability of the tiling strategy to deal with 
any Boolean function, even when there are no regularities. Table 2 gives, for N o = 4 ,  
6 and 8, the mean number of layers ( L )  for 100 random functions, and  for each layer 
the mean number of hidden units ( N L )  (without counting the threshold unit). 

It is not surprising that for a function without any regularities, the numbers of 
layers and of hidden units increase rapidly with No.  This example shows that it is 
possible to end up  with a rather complicated architecture. 

3.2. Generalisation 

Once a network has been built by the presentation of a training set, it performs the 
correct mapping for all the patterns in this training set. The next question is: how 
does i t  perform on new patterns? The general belief is that these generalisation 
properties essentially depend on ‘phase space’, or ‘entropic’, factors. For a fixed 
geometry of the network, varying the couplings, one generates a space R of networks. 
Training selects a subspace R, of R (the subspace of all networks which give the correct 
output for each input of the training set). Now, inside R, lies the subspace of solutions 
R, consisting of networks which actually implement the function one is learning 



2198 M M h r d  and J-P Nodal 

Table 2. Learning random Boolean functions with No = 4 , 6  and 8. For each No we give 
the average number of layers (for 100 random functions) and the average number of hidden 
units in each layer. For each layer the average is over the trials for which the total number 
of layers is at least equal to L. The percentage of these trials is given in parentheses. 

N , = 4  N 0 = 6  N o = 8  

2.08 * 0.05 3.75k0.07 7.13i0.08 
2.68 i 0.08 (100% ) 
1.15 i 0.04 (95% ) 

1 .O ( 1 3 '10 ) 

8 . 5 5 ~ 0 . 0 9  (100%) 15.5 7 * 0.10 ( 100% ) 
4.68 * 0.12 ( 100% ) 11.55*0.10 ( lOO?o)  
2.09 * 0.10 (99% ) 10.80*0.12 (loooh) 
1.20*0.06 (64%) 8.50iO.14(10O0/o) 

1.0 (12% j 5.8410.16 (lOOo/o) 
3.01 10.17 (lOOo/o) 
1.73i0.11 (75%) 
1.0610.06 (36%) 

2.0(1%) 
l.O(l?o) 

(remember that one function can be realised by several networks). The ability to 
generalise has been found to increase as the ratio of the volumes of SZ, to 0, increases 
(Carnevali and Patarnello 1987, Denker er a1 1987). From this idea one may expect 
that the generalisation will improve whenever one is able to learn the same training 
set with fewer hidden units. If this turns out to be the case, our strategy has the great 
advantage of generating only the hidden units that it needs in order to learn the training 
set, not more. 

In practical applications No need not be small (Sejnowski and Rosenberg 1987), 
and the size of the training set is smaller than 2 N o .  There are two reasons why the 
network is able to achieve good performance nevertheless. First of all the task can be 
relatively simple (while non-linearly separable), and secondly what is very important 
is that the actual patterns which are presented to the network are in general strongly 
correlated: they never span the space of all configurations uniformly. For these reasons 
we have decided to test the generalisation properties of the tiling strategy on a problem 
where No is not small (such that the complete scan of all patterns is impossible), and 
the patterns one wants to analyse are generated stochastically, but with strong correla- 
tions which impose that only a small fraction of configuration space has to be analysed 
in practice. 

We have chosen a simple example which belongs both to statistical physics and to 
pattern recognition. The No input neurons are organised in a one-dimensional chain, 
and the problem is to find out whether the number of domain walls is greater or smaller 
than three. ( A  domain wall is the presence of two neighbouring neurons pointing in 
opposite directions. We use periodic boundary conditions so that if the first and last 
neurons point in opposite directions this is interpreted as a domain wall. Obviously 
the number of domain walls must be even, and is twice the number of domains. This 
is exactly the problem which has been studied (Denker et af 1987) on small samples, 
under the name 'two or more clumps'.) The patterns are generated through a stochastic 
procedure: they are thermalised configurations of the one-dimensional Ising chain, 
obtained through a Monte Carlo method (Binder 1979). The temperature of thermalisa- 
tion has been chosen as T = 2/ln( No/ k )  so that there will be an average of k domain 
walls in the patterns. The use of the free parameter k allows us to tune the difficulty 
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of the problem. If k is much larger (respectively, much smaller) than three, the problem 
is easy in the sense that there are nearly no patterns with less (respectively, more) than 
three domain walls and the output is nearly always 1 (respectively -1). The problem 
is harder for k of the order of three. 

Most of the simulations were performed with No=25,  although we also used 
No = 50. (Actually the value of No is not a limitation for our algorithm. In the actual 
implementation of the perceptron algorithm, we use only the matrix of overlaps 
Qlrv = E , =  ,, [rt;. The computation of this matrix is the only place where an  increase 
in No increases the complexity of our algorithm.) Training sets of various sizes ranging 
from p o  = 50 to po  = 600 were used, and the test sets had the same size as the training 
sets. Of course in all cases the algorithm found a network which learnt exactly the 
whole training set. The generalisation was measured as the ratio of the number of 
correct answers in the test set to the size of this set. The results were averaged over 
several samples (different choices of random patterns in the training and  test sets). 
The results are presented in figure 1, for values of k equal to 1, 3, and  5 .  As expected 
k of order 3 is the hardest case. In simple cases like k = 1 the algorithm generates a 
small network which performs well even after a short training, but there is not much 
improvement when larger training sets are used, since there are almost no patterns 
which show what is the rule one wants to extract. For k = 3 the performance is not 
as good, but it improves with training. One should notice that no hint of any kind 
has been given to the network, so that the tiling strategy seems to perform better than 
back-propagation which apparently does not generalise, even for smaller No,  if no  
hint is given (Denker er al 1987). 

As is well known (Rosenblatt 1962, Minsky and  Papert 1969), a suitable preprocess- 
ing can render the learning task easy-i.e. learnable by a perceptron algorithm for 
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Figure I .  Learning to discriminate lsing chains by the number of domain walls (greater 
o r  smaller than three).  Shown is the percentage of patterns of No = 25 units with the correct 
output in the test set, as a function of the size p o  of the training set (equal to the size of 
the test set) .  The average number o f  domain walls in the presented patterns is k. For each 
k and  pn, data  are  averaged typically over 25 samples (250 samples for p o = 5 0 ) .  For 
p i ,  = 600, the average number of layers of the network was respectively 3.0, 8.5 a n d  5.5  for 
k = 1, 3 and  5 .  
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example. For instance one can make a first layer of No units which is a detector of 
domain walls (see, e.g. Denker et a1 1987). Then the remaining task is to count the 
number of units in the +1  state in this layer, a task learnable by a perceptron algorithm. 
The strategy did not find here this ‘human’ solution-contrary to the case seen above 
of the exhaustive learning of the parity problem. This may be simply due to the fact 
that here learning is performed on a rather limited training set. This problem is certainly 
worth further studies. 

3.3. Quality of convergence 

To quantify the quality of convergence one might think of at least two parameters. 
The first is the number of errors eL which would be produced by the network if stopped 
at layer L, as defined in § 2. In addition to having the mapping exactly learned, one 
would like that the internal representation gets smaller and smaller (i.e. the number 
of classes diminishes) from one layer to the next one. Thus a second interesting 
parameter is the number of distinct internal representations (classes) p L  in each 
layer L. 

We have measured numerically the evolution of p L  and eL  as functions of the layer 
index L for the problem of domain wall discrimination defined in § 3.2. The data 
shown on figure 2 result from an average over 25 samples with No = 25, p o  = 600 and 
k = 3 .  The average number of layers was found to be 8.5 f 0.2 and for all the samples 
the algorithm converged with at least 7 layers and at most 11 layers. It is interesting 
to notice that in the range 2 G L S 7 the decrease in eL is linear in L, and this seems 

P 
p. 

P 

A 
a 

4- 

n 

5 c  
5 

P 

Layer index 

Figure 2. Statistics (obtained by averaging over 25 samples) of the architecture of the 
network after learning of p , ,  = 600 patterns of N,,  = 25 units, having on average k = 3 domain 
walls. (The learning task is to discriminate the patterns according to the number of domain 
walls, greater or smaller than 3.) Three quantities are plotted as functions of the layer 
index-. ( i )  The mean number of units in a layer (0) (measured against the right-hand 
scale), which has a non-monotonous behaviour before decaying regularly to 1. ( i i )  The 
number of classes pL ( X )  (measured against the left-hand scale). ( i i i )  The number of errors 
e ,  (+ )  (measured against the left-hand scale) as measured with respect to the master unit 
of layer L (see text). The straight lines are only guides for the eye. When not shown, the 
error bars are less than the size of the points. 
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to be also the case for p r .  We have observed a similar behaviour in the case of random 
Boolean functions. Although we have no interpretation so far for these linear 
behaviours, it is thus tempting to use the slope of the linear decrease of the percentage 
of errors as a measure of the complexity of the problem to be learnt. 

3.4. Comments 

Before we conclude, several comments are in order. Clearly it is useful to limit as 
much as possible the number of hidden units. In this respect, variants of the algorithm 
might be helpful. There is a lot of freedom in the choice of the unfaithful classes to 
be learnt. Our choice has been to learn first the smallest classes, but we have not 
investigated other choices. A possible variant, which we have not tried, would be to 
introduce a ‘sleep’ phase (Rujan and Marchand 1988): once a layer is achieved, one 
could see whether some units can be removed so that the classes remain faithful. 

We have tested a variant of the algorithm where the master unit is generated 
differently. In that variant, it is the standard pocket algorithm which is run on the set 
of prototypes of the preceding layer-i.e. each prototype v has weight 1 instead of its 
volume Vu. In that case, the convergence is no longer guaranteed, and  we have not 
been able so far to prove that this strategy will always converge. However we found 
in all our simulations that this strategy performed almost as well as-and some times 
better than-the tiling algorithm detailed above. 

Apart from the above variants, there is only one adjustable parameter in the 
algorithm. This is the maximum number of iterations which are allowed before one 
decides that the perceptron algorithm has not converged. If this parameter is too large, 
there is a waste of CPU time. If it is too small, the non-convergence decision will 
sometimes be wrongly taken, and  the size of the net may grow unnecessarily. A better 
theoretical understanding of the time of convergence of the perceptron algorithm would 
be very helpful in order to optimally control this parameter. 

Since we have not yet tried to optimise the algorithm, computer times can only be 
given as a rough estimate of the performances of the algorithm. For example, the 
parity problem for No = 6 and No = 8 took respetively about 1 and  5 CPU seconds on  
a Convex C1. 

4. Concluding remarks 

We have presented a new strategy for building a feedforward layered network for any 
given Boolean function. With respect to previous approaches to learning in layered 
systems, such as backpropagation, our approach presents a completely new way of 
addressing the problem. The geometry, including the number of units involved and 
the connections, is not fixed in advance, but generated by a growth process. We have 
identified some possible roles of the hidden units: the master units drive the growth 
and  ensure a number of errors which decreases strictly from one layer to the next; the 
ancillary units complete each layer in order to get faithful internal representations. In 
practice, numerical tests of the tiling algorithm on model examples are very promising. 
Clearly many things remain to be done. One can try to improve the algorithm in 
particular by investigating variants of the perceptron algorithm used to build the hidden 
units. It would be interesting to systematically compare the performances (efficiency, 
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computer time, size of the architecture.. .) of the tiling algorithm with those of other 
algorithms. 

Generalisation to neurons with continuous values is worth studying. A relatively 
simple case is that of continuous inputs and binary outputs, for which the algorithm 
should work without any modification. The only new feature is a problem of precision: 
it may happen that the generation of ancillary units in the first hidden layer require 
much computer time whenever there exist two patterns which are very close to one 
another and have opposite outputs. 

In this respect, it is also useful to mention a possible generalisation to the case of 
conflicting data. This is the case where identical patterns have opposite outputs. 
Obviously it is not possible to learn exactly all the patterns, the minimum number of 
errors, emin,  being simply determined by the number of conflicting inputs. Then it is 
not possible to get a faithful representation in any layer (since the representation in 
the input layer is itself unfaithful). One must stop adding ancillary units as soon as 
the maximal set of unconflicting patterns has been represented faithfully. In this way 
one can reach an error level equal to emin .  

The theorem of 0 2.2 also suggests other strategies. For example one can obtain 
faithful classes by simply connecting the master unit of layer L to the master unit of 
layer L-  1 and to all the units of the input layer. Then the internal representation of 
a pattern in layer L is the union of the pattern itself and of the associated state of the 
master unit of this layer, and there are p o  distinct internal representations. We have 
not yet investigated the performances of this algorithm. 

To generalise these algorithms to several output units, one can generate in each 
layer as many master units as there are output units. After this has been done one 
generates the ancillary units which build up faithful classes. One interesting perspective 
is to find a strategy which limits as much as possible the number of units in each layer. 
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